Math 434 Assignment 2

Due March 29

Assignments will be collected in class.

- 1. Let α be an ordinal and $X \subseteq \alpha$. Prove that (X, ϵ) is a well-order and that $ot(X, \epsilon) \leq \alpha$.
- 2. Prove that ordinal addition and multiplication are associative $((\alpha + \beta) + \gamma = \alpha + (\beta + \gamma))$ and similarly for multiplication).
- 3. Let α and β be ordinals with $\alpha < \beta$. Prove that there is a unique ordinal δ such that $\alpha + \delta = \beta$.
- 4. Prove Zorn's Lemma. *Hint: Look at the proof that every vector space has a basis.*
- 5. Use Zorn's Lemma to show that every consistent theory has a complete consistent extension. That is, let T be a consistent \mathcal{L} -theory; show that there is a complete consistent \mathcal{L} -theory $T' \supseteq T$.
- 6. A real number is algebraic if it satisfies a polynomial equation with coefficients in N. Show that there are countably many algebraic numbers.

For the next few problems, we will work in the topological space \mathbb{R} though the results hold more generally. Recall that a x is a *limit point* of X if $x \in \overline{X} - \{x\}$, and that a set is closed if and only if it contains all of its limit points. A point $x \in X$ is an *isolated point* of X if it is not a limit point of X, or equivalently, there is a neighbourhood of x that does not intersect X. A set is *perfect* if it is closed and has no isolated points.

- 7. Show that any collection of disjoint open sets in \mathbb{R} is countable.
- 8. We will show that any non-empty perfect set $X \subseteq \mathbb{R}$ has cardinality $2_0^{\aleph} = |\mathbb{R}|$.
 - (a) Let 2^{<ω} be the set of finite sequence of 0's and 1's, and let 2^ω be the set of infinite sequences of 0's and 1's. Let 2ⁿ be the set of length n sequences of 0's and 1's. We denote by |σ| the length of σ.

Construct, for each $\sigma \in 2^{<\omega}$ an open interval U_{σ} such that:

- $U_{\sigma} \cap X \neq \emptyset$ for each σ .
- Whenever $|\sigma| = |\tau|, U_{\sigma} \cap U_{\tau} = \emptyset$.
- Whenever $\sigma \prec \tau$ (τ is a proper extension of σ), $\overline{U_{\tau}} \subseteq U_{\sigma}$.

- The diameter of U_{σ} is at most $2^{-|\sigma|}$.
- (b) Show that for each $\pi \in 2^{\omega}$, there is a point $x_{\pi} \in \bigcap_{\sigma \prec \pi} U_{\sigma}$, and that $x_{\pi} \neq x_{\pi'}$ for $\pi \neq \pi'$.
- (c) Conclude that $|X| = |2^{\omega}| = 2^{\aleph_0}$.
- 9. Given a closed set $X \subseteq \mathbb{R}$, the Cantor-Bendixson derivative of X is the set X' of all limit points of X. Since X is closed, $X' \subseteq X$. Define:
 - $X^0 = X$,
 - $X^{\alpha+1} = (X^{\alpha})',$
 - $X^{\lambda} = \bigcap_{\alpha < \lambda} X^{\alpha}$ for λ a limit ordinal.
 - (a) Prove by transfinite induction that each X^{α} is closed.
 - (b) Prove that for every closed set $X \subseteq \mathbb{R}$, X X' is countable.
 - (c) Prove that the sequence (X_{α}) is eventually constant, and that this happens at a countable ordinal: For any closed set X, there is a countable ordinal α such that for all $\beta \geq \alpha$, $X^{\alpha} = X^{\beta}$. Hint: If $X \neq X'$, then there is an interval with rational enpoints that intersects X but not X'.
 - (d) Show that X^{α} is perfect, where α is as above.
 - (e) Prove that every closed subset of \mathbb{R} is a union of a perfect set and a countable set, either of which might be empty.

In particular, every closed set of \mathbb{R} has cardinality $\leq \aleph_0$ or cardinality 2^{\aleph_0} , that is, the continuum hypothesis is true for closed subsets of \mathbb{R} .